If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-8X+9.75=0
a = 1; b = -8; c = +9.75;
Δ = b2-4ac
Δ = -82-4·1·9.75
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-5}{2*1}=\frac{3}{2} =1+1/2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+5}{2*1}=\frac{13}{2} =6+1/2 $
| 6/1k+1/3=8/9 | | 4t-5=2t-6 | | 20g-19g=10 | | 4x=7+x-1 | | 2n-3+n=24 | | x=-0.25+0.25*7+x | | 6k+1/3=8/9 | | 12x+5=7x–8 | | -3(2x-1)=20 | | 15y^2-16y+4=0 | | 36=8y-(5y-15) | | 5(x-1)=2(2x+3) | | -6a+3=-3(a-1) | | 8r-6=2r-20 | | X-6/4+x+2/5=39 | | 6(2x-4)=2(3x+3) | | 7n=18-8n | | 2y=18/17 | | 2x+x2=3 | | .28w=3.08 | | 15^2+18x+10x+12=0 | | B=4/3(j-1) | | 4x+19=6x+11 | | 4+-19=-6x+11 | | 3+6x=-2x+x | | 2(u-3)=7u+14 | | 12X^2+13x-19=0 | | 5x+23=13-41 | | 4r(2r+1)+2r+5=0 | | x=-6/7x+8/3 | | 4/x+2=6/3x+2 | | -3x+3(-2x+13)=120 |